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Aluminum, which has a very negative enthalpy of combustion, is a widely used
ingredient in solid rocket propellants. Conventional formulations of solid rocket
fuel use micrometer-sized aluminum particles; however, a number of studies have
shown that the incorporation of nanometer-sized aluminum particles can greatly
increase the energetic properties of the fuel.!# There are two main ways in
which nanoparticle formulations are beneficial for propellants and other energetic
materials: (1) Smaller particles have a higher extent of conversion, which means
that a higher percentage of fuel can be oxidized under practical combustion
conditions as the particles decrease in size; (2) the burn rate increases greatly as
the particles decrease in size.

The issues noted above and the fundamental need to understand the properties
of nanoparticles have motivated the study of Al nanoparticies. One of the key
goals in nanoparticle modeling is the ability to model particle properties as a
function of size. A classic example of a size-dependent property is the melting
point.>-® A number of studies have been carried out on the size-dependent melt-
ing points of Al clusters and nanoparticles,’~° and all indicate a melting-point
that increases with particle size. The melting-point depression of small parti-
cles is important in understanding the physical characteristics of nanoparticles,
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and it also has technological implications, affecting, for example, the igni
temperature. Micrometer-sized Al particles are typically coated by a thick o;
layer, which cracks during combustion because the pure Al interior of the part
melts and significantly increases the internal pressure.? It is therefore poss:
that an earlier phase change during the heating process accompanying comt
tion affects the ignition temperature, but quantitative estimates of the effect
uncertain because the burn mechanism for nano-Al may be different from 1
for micrometer-sized Al particles. Nanoparticle simulations can provide use
information about this mechanism and about other aspects of technologic:
important systems composed of metal nanoparticles.

In typical materials simulations, the Born—-Oppenheimer separation of nucl
and electronic motions!® is assumed, and nuclear motion is governed by a sin
ground-electronic-state potential energy function. This assumption is tenuous
systems involving bulk metals, and one suspects that it is only approximat
valid for metal nanoparticles as well. For small clusters, we may compute el
tronic energy gaps accurately. For example, the first excited electronic state
Ab, 3% ¢ » is only 0.03 eV higher in energy than the ground state, I1,,!! and f

first excited electronic state of Als, ?A”,, is only 0.23 eV higher in energy th
the ground electronic state, 2A’,.11 The size dependence of the highest occupi
molecular orbital/lowest unoccupied molecular orbital gap for larger Al ch
ters and nanoparticles is uncertain, but it is reasonable to expect that low-lyi
electronic states may be involved in controlling the size dependence of certs
properties of nanoparticles, such as enhanced reactivities. We note that nonadi
batic effects have been observed in the reactions of Al atoms with hydrogen.
Nevertheless, the Born—Oppenheimer ground-electronic-state potential ener;
surface is a practical starting point for simulations involving Al particles a1
their reactions with hydrogen or other heteroatoms.

When we assume that the Born—Oppenheimer approximation is valid, the in
tial step in any simulation is the development and validation of a potential energ
function. Reliable electronic structure calculations are quite affordable for sy
tems with up to ~10? electrons!3, but the computations become less and le;
reliable as the particle size increases, due to the approximations that must t
made. Therefore, it is common!#!> in nanoparticle simulation to use comput;
tionally inexpensive, atomistic, analytic potential energy functions parameterize
to reproduce experimental or computed bulk properties. One of the most impo;
tant characteristics of nanoparticle systems, however, is the dependence of the:
physical properties on particle size. Therefore, one of the key goals of nanopart;
cle simulations is to model and predict trends in this size dependence, but usin
potentials fit to bulk properties may introduce systematic size-dependent errors

The approach that we have taken in our nanoparticle work is to adjust analyti
potential energy functions to fit electronic structure calculations for small A
molecules, Al clusters, Al nanoparticles, and various bulk crystal phases as wel
as experimental data for diatomic molecules and the observable bulk crysta
phase. The primary property that we use for fitting is the geometry-dependen
atomization energy (both absolute and relative), and we include a large numbe:;
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of geometries both near and far from local minima. By doing this we implicitly
include equilibrium bond lengths and forces. For Al, prior to our work, accurate
data were unavailable for particles larger than a few atoms. The development of
an Al database to fill this void is discussed in Section 1. We then discuss analytic
potential energy functions and provide an example involving the size-dependent
cohesive energy of Al in Section 2. In Section 3 we discuss in detail some recent
simulations on the size-dependent properties of Al nanodroplets.

The phrase particle size is used to refer to the diameter or volume of a particle
with a fixed number of atoms. (The phrase can also refer to the number of atoms
in a particle.) There are many ways to compute the diameter of a particle. The
approach that we take here is to compute the diameter dm.x as the maximum
Al-Al distance plus twice the van der Waals radius of Al, denoted rqw. For Al,
rvaw is 2.436 A (discussed in Section 3). We can use this simple method to calcu-
late how particle size depends on the number of Al atoms. We consider roughly
spherical clusters and nanoparticles in which the atomic positions correspond to
face-centered-cubic lattice sites. (The lattice constant used is 4.022 A.16) The
diameters for Al,, with n=13, 19, 55, 177, and 381, are then 1.04, 1.27, 1.61,
2.18, and 2.74 nm, respectively. To make a distinction between nanoparticles and
clusters, we arbitrarily consider systems with fewer than 20 atoms to be clusters
and those with 20 or more atoms to be nanoparticles.

1. NANO-AL DATABASE AND EFFECTIVE CORE SCHEME

The first step in developing the nano-Al database was to identify an afford-
able level of electronic structure theory that would provide accurate results for a
wide range of clusters. There are two general classes of electronic structure the-
ory: wave function theory'’-!® (WFT) and density functional theory!>-2 (DFT).
State-of-the-art WFT methods are generally accurate to better than 0.04eV per
bond (1 kcal/mol per bond) for bond energies, and the most accurate WFT meth-
ods are accurate enough that they probably do not need to be specifically verified
for Al clusters. The computational cost of these methods limits the feasibility
of reliable ab initio WFT methods to approximately 10 Al atoms. DFT offers
a more computationally affordable approach to calculating atomization energies,
but due to the empirical nature of the best density functionals, the DFT methods
themselves usually have to be specifically validated.

The first phase of the analytic potential energy function development was to
determine how accurately DFT methods can treat small Al clusters. We used
multicoefficient Gaussian-3/version 3*! (MCG3/3) computations to develop?? a
small database of accurate bond energies for Al, (n=2 to 7). The MCG3/3
method?! is a WFT method that is accurate to within 0.02 eV/atom when tested
against the Database/3?! collection of main group atomization energies. Using
this database, we were able to assess the error of several DFT methods and
identify the PBEO functional®®?* as a promising functional with an accuracy
of 0.0l eV/atom when tested against the database of MCG3/3 calculated Al,
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atomization energies.>? Because the general accuracy of MCG3/3 is 0.02 eV/atom,
we can assign an error of 0.02eV/atom to PBEO.

The PBEO functional was assessed using the modified G3Large (MG3) basis
set,>>:26 which is an all-electron basis set. [The MG3 basis set is equivalent for Al
to the 6-311+G(3 d2f)?"-3! basis set.] The computational time required for a DFT
calculation with the MG3 basis set becomes intractable as the size of the system
grows, and the largest system we addressed at this level is Aly3, which is a 1.0-nm
particle. This system requires 110 hours of computer time for a single-point
energy calculation on a single processor of a Hewlett-Packard (HP) Itanium-2
computer. The affordability of these calculations can be increased greatly by
replacing the all-electron basis set with a valence-electron basis set and replacing
the core electrons by an effective core potential (ECP).3? The combination of
valence-electron basis set and ECP that we have developed (specifically for use
with DFT methods) is labeled MEC (Minnesota effective core potential).33 When
tested against PBEO/MG3 calculations, the accuracy of the PBEO/MEC method
is 0.01 eV/atom for atomization energies per atom (also called cohesive energies)
and 0.005 A for bond lengths. The database that we used for development of the
analytic potential energy functions was created using the PBEO functional with
the MG3 basis set for systems with n < 13 and using the PBEO functional with
the MEC scheme for systems with n =14 to 177. The computer time required
for a single-point energy calculation with n =177 is ~8000 hours (31 hours on
256 processors of a HP Itanium-2 computer).

We enforced the correct bulk limit on the analytic potential energy functions by
including experimental values'® for the cohesive energies, lattice constants, and
bulk moduli of the face-centered-cubic (FCC) crystal phase. Accurate cohesive
energies for the hexagonal-close-packed (HCP) and body-centered-cubic (BCC)
crystal phases are included by adjusting calculated values* by a procedure that
is described elsewhere.?> Details of the database are also given elsewhere.?>3
Some additional information about the database is provided in Section 3. We note
briefly that we have included multiple points on the potential energy surface for
each size cluster. By doing this, we fit to regions of the potential energy surface
that would be visited during a finite-temperature simulation.

2. ANALYTIC POTENTIAL ENERGY FUNCTIONS

In previous work we tested and developed several analytic potential energy func-
tions for Al. Here we present results for six analytic potential energy functions,
and additional results can be found elsewhere.3:3¢ We note that new and accurate
potential energy functions®’ are being developed for condensed phase Al, but we
do not survey those methods exhaustively.

The embedded atom model®® has been widely used to study metal systems.
For the embedded atom model, the potential energy, E, of the system is written
as

E=) Ui+ ) Filpo) (1)

i>] i



ANALYTIC POTENTIAL ENERGY FUNCTIONS 173

where r; is the distance between atomic centers i and j, U, is a pairwise inter-
action between atoms i and j, and F; is a functional of the local electron density
at the nucleus of atom i due to the other atoms; this density is called p;. In many
embedded-atom models, the embedding functional F is the square root of p;, and
p; is approximated as a sum of pairwise additive terms. Note that the overall
potential is not pairwise additive because F is nonlinear; nevertheless, U, and p;
are functions of single-pair distances, so the cost for evaluating the potential is
just as manageable as that for a pairwise additive potential.

Several embedded-atom models that differ in their prescriptions for
Fi, U, and p; have been proposed®>38-% for Al. In this chapter we
discuss five embedded-atom models: Ercolessi—Adams,*! Mei—Davenport,*2:43
Sutton—Chen,* Streitz—Mintmire,* and NP-B.35 The Mei- —Davenport and NP-B
models were chosen for detailed study here because in previous work3® we
reoptimized seven embedded-atom models against our database and found that
the reparameterized Mei—Davenport model (which, as just explained, is called
NP-B) gave the most accurate results. We also consider the Sutton—Chen,
Streitz—Mintmire, and Ercolessi—Adams potentials because they have been used
previously to simulate Al nanoparticles.®45-5!

The mean unsigned error per atom for NP-B is 0.05eV/atom, whereas the
Mei-Davenport fit has a mean unsigned error per atom of 0.18 eV/atom. This
improvement in accuracy shows that the physical form of the Mei-Davenport
potential energy function is flexible enough to describe the bonding of Al atoms in
different bonding situations, but that the data used to obtain the original param-
eters (which included only bulk data) were not diverse enough to provide an
accurate potential energy function for Al clusters and nanoparticles. This com-
parison shows that it is important to have a robust data set in addition to having
an appropriate physical form for the potential energy function.

We also consider the NP-A analytic potential energy function,> which was
also developed using the Al database discussed above. This function has the form

E = Z Vz(rij) iI}/IB (2)

i>j

where V', is the two-body interaction fitted to the extended-Rydberg®?5? func-
tional form, and MB is a many-body function that deviates from umty when

atoms [ and j 1nteract with other atoms. Several prescriptions for f were

tested>? us1ng the database discussed above, and an accurate fit was obtamed
with fl f; , where f, © is a screening function that weakens the bond
between atoms i and j if other atoms are in between atoms i and j, and f
incorporates the dependence of the bond order on the coordination numbers of
the participating atoms.

To illustrate the screening term, we consider a system of three Al atoms (see
Figure 1). In the figure the coordinates of atoms 1 and 2 are held fixed and atom
3 moves along coordinate R. Physically speaking, the interaction between atoms

1 and 2 is screened by the presence of atom 3 as atom 3 moves along a R. The
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Figure 1 In this model system, atoms 1 and 2 are held fixed and atom 3 moves along
coordinate R (A). Atoms 1 and 2 are separated by 2.8635 A. The interaction energy (in
eV/atom) for this system is plotted with a well depth of <1.3 for PBEO/MG3, with a well
depth of 1.55 for an accurate two-body interatomic potential [Eq. (3)], and with a well
depth of ~1.3 for a two-body interatomic potential that is modified by a screening term
[Eq. (4)] with parameters of the ER2+ES potential.

interaction energy is plotted in Figure 1 as a function of R for the following two
potentials:

E=Y W) 3)
i>j
and
E = Z Vz(r,-j)fg 4)
i>j

where Eq. (3) is simply the two-body interaction without many-body effects and
Eq. (4) is the two-body interaction modified only by the screening term. [In pre-
vious work,3¢ Eq. (4) was denoted ER2 + ES.] We can see from Figure 1 that the
two-body interaction alones significantly overestimates the three-body interaction
energy and the screening function allows for a more accurate description of the
three-body interaction. In addition to predicting a more accurate binding energy
for Alz, Eq. (4) also predicts a more physical repulsive wall.

In addition to screening, which is a three-body effect, we also consider the
effect of coordination number, which in bulk Al is 12. We note that screening
and coordination number effects are related; that is, the presence of the third
atom in Figure 1 raises the coordination number of atoms 1 and 2, and a highly
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coordinated atom involves pairs of atoms being screened by nearby atoms.
However, we found it useful to treat these effects separately and to include coordi-
nation number effects explicitly. To illustrate the effectiveness of the coordination
number term, we consider a potential energy function of the form

E=) V(rip) fN (5)

i>j

In previous work,*® Eq. (5) was denoted ER2 + ECN. The cohesive energy of the
ground state of icosahedral Alj; (which consists of a central atom coordinated
to 12 atoms and 12 surface atoms each coordinated to six atoms) computed with
PBEO/MEC is 2.5 eV/atom. The cohesive energies of the same structure computed
with Egs. (3) and (5) are 5.5 and 2.5 eV/atom, respectively. The pairwise additive
potential energy function in Eq. (3) overestimates the interaction energy of Al;3
by 3 eV/atom, and the coordination number factor corrects this error.

As mentioned above, the screening and coordination number factors are
related, and in fact Eqs. (4) and (5) have similar overall errors when tested
against the full database. However, the cohesive energy of Al;; computed with
Eq. (4) is 3.4eV/atom and is less accurate than Eq. (5) for this property. We
find in general that the effect of including the coordination number term is more
significant for bigger clusters (which have the largest contribution to their total
energies from coordination effects), whereas the reduction in the error due to the
incorporation of the screening term is more evenly distributed.

Physically, one expects that there is some cutoff distance at which the inter-
action between two atoms may be set to zero. We have therefore built cutoffs
into the functional forms of NP-A and NP-B. When using a cutoff distance, the
cost to evaluate the analytic potential energy function scales as n in the large-n
limit. Such linear scaling is achieved for the NP-A potential by multiplying the
terms in Eq. (2) by a cutoff function,>* which goes smoothly to zero at r;;=6.5
A. Without a cutoff, the computational cost of the screening and coordination
number factors both scale as n3. The range parameter of the cutoff function
was optimized during the fitting procedure to avoid numerical and convergence
problems that can arise when applying cutoffs during simulations. The cutoff
function for the NP-B analytic potential energy function goes to zero at 5.38 A.
Without the cutoff function, the computational cost of evaluating the embedding
term scales as n2, where n is the number of atoms in the system. Both potentials
(NP-A and NP-B) begin to scale linearly at ~10,000 atoms. However, the cutoff
functions give significant cost reductions for smaller clusters. For example, the
average CPU cost of an energy evaluation of Aljgss with NP-A and NP-B on an
IBM Power4 computer is reduced by factors 5 and 2, respectively.

In Figure 2 we plot the mean unsigned error> (in eV/atom) for the five
potentials for groups of various particle sizes. The groups contain particle sizes
withn =2,3,4,7,91t0 13, 14 to 19, 20 to 43, 50 to 55,5610 79, 80 to 87, and 89 to
177, respectively, and are labeled by the average number of atoms in the particles
of that bin, which are 2, 3, 4, 7, 13, 18, 33, 53, 71, 86, and 124, respectively.
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Mean unsigned error (e V/atom)

Average n

Figure 2 Mean unsigned error (in eV/atom) grouped by particle size for the
Ercolessi—Adams (*), Mei—Davenport (x), NP-A (0O), NP-B (A), Streitz—Mintmire (+),
~ and Sutton—Chen (O) potential energy functions of the average particle size in a bin.

The most accurate potential for clusters (n =2 to 20), nanoparticles (21 to 177),
and the bulk crystal phase is NP-A. The Mei—Davenport, Streitz—Mintmire, and
Sutton—Chen PEFs were not fit to nanoparticle or cluster data and have a more
size-dependent error. On the one hand, it might be argued that it is unfair to test
the bulk- fitted potentials against nanoparticles and clusters, but on the other hand,
it can be argued that these studies are very important because these potentials
are sometimes used in nanoparticle simulations without validation.>4>~%°

The Ercolessi and Adams analytic potential energy function*! was fit (by
the original authors*!) to Al cluster and surface data and to bulk crystal data.
The mean unsigned error (MUE) per atom for this analytic potential energy
function (when evaluated with our database) is less dependent on the number of
atoms than the error for the Mei—Davenport, Streitz—Mintmire, and Sutton—Chen
analytic potential energy functions; however, it has a larger mean unsigned error
(MUE) per atom than either the NP-A or NP-B PEF. The total MUE for the
Ercolessi and Adams analytic potential energy function is 0.11 eV/atom, whereas
the NP-A and NP-B analytic potential energy functions have MUE values of
0.03 and 0.05 eV/atom, respectively. The fitting data used by Ercolessi—Adams
was obtained (by the original authors) from the local density approximation to
DFT,55-56 which is not usually quantitatively accurate for metals,’’ whereas our
data was obtained from a validated®? hybrid DFT method (PBEO). The improved
accuracy of our analytic potential energy functions is due, then, to the quality of
fitting data, which again highlights the need to have not only physical functional
forms but also accurate fitting data. '

An interesting example of how the errors depend on the number of atoms
is to look at the cohesive energies of nanocrystals, which are nanometer-sized
objects with a structure cut from a bulk crystal. In this chapter we discuss FCC
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nanocrystals, which are nanoparticles that have the same local arrangement of
atoms that is found in FCC crystals. An FCC crystal is generated around a central
atom using a lattice parameter. The distance from the central atom in an FCC
cluster to another atom i in the cluster is denoted R;, and due to the periodic
nature of the crystal, there is a unique set, S,,, of values for R;, where m is an
index. Nanocrystal m is defined as a nanocrystal containing all of the atoms with
R; <§ ;. For an FCC crystal, the nanocrystals studied here have n =13, 19, 43,
55,79, 87, 135, and 177, where n is the number of Al atoms. Thus, this sequence
of values defines a unique set of FCC nanocrystals that have geometric magic
numbers. It also possible to define nonunique FCC nanocrystals for n =14 to
18 and 20 to 42, which are also studied in this chapter. The strategy that we
employ for determining the coordinates of these nonunique nanocrystals is based
on our determination of the lowest-energy geometry. For Al4, an atom is placed
at one of the available and equivalent FCC lattice sites between nanocrystal Al
and Aljg. There are now four nonequivalent unoccupied lattice sites in which
an atom can be located to form Al;s, and the energy with each of these lattice
sites occupied is evaluated with PBEO/MEC to determine which isomer of Al;s
is the lowest in energy. The same procedure is followed for n =16 to 18 and
n = 20 to 42.

In Figure 3 we plot the cohesive energies computed with the PBEO/MEC
DFT method and by the MeiD, NP-A, NP-B, StrM, and SutC analytic potential
energy functions for FCC nanocrystals with n =13 to 43, 55, 79, 87, 135, and
177. The lattice constant is optimized for each nanocrystal with the same method,
PBE(O/MEC or an analytic potential energy function, that is used to calculate the
cohesive energy of that nanocrystal. For example, the cohesive energies calculated
with NP-A also use lattice constants that are calculated with NP-A. The only
potentials that are accurate across this entire size range are NP-A and NP-B,
with NP-A being more accurate. The StrM potential is accurate for n > 20 and
is less accurate for n < 20. This behavior in the StrM potential can also be
seen in Figure 2. The other two potentials, MeiD and SutC, have errors that are
approximately 0.1 eV/atom for nanoparticles larger than n =55, and the errors
grow to 0.3 to 0.4 eV/atom for smaller nanocyrstals.

All of the analytic potential energy functions presented in this chapter break
down to some extent for small n, where n is the number of atoms. NP-A is
built on an accurate two-body interaction, so the dimer is quantitatively accurate
for NP-A. The NP-B analytic potential energy function does reasonably well for
the dimer (see Figure 2), but both NP-A and NP-B cannot predict the correct
geometries for Aly or Als. Aly and Als are known to be planar,!!:2%5 but the
analytic potential energy functions predict Als and Als to be three-dimensional.
It is possible to develop analytic potential energy functions to predict planar
geometries for Aly or Als,%® but these analytic potential energy functions are
inaccurate for larger clusters. For example, the analytic potential energy function
of Pettersson et al.*® that predicts Al; and Als to be planar also predicts Al to
be planar and has a 0.7-eV/atom error for the bulk cohesive energy.’® One way
to understand this problem is by comparing the total coordination numbers of
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Figure 3 Cohesive energy (in eV/atom) for FCC nanocrystals computed with
PBEO/MEC (o) and the Ercolessi—Adams ([), Mei~Davenport (x), NP-A (), NP-E
(), Streitz—Mintmire (4), and Sutton—Chen (O) potential energy functions as functions
of the number of atoms (along the bottom) and particle diameter (along the top).

the Al atoms in planar and nonplanar clusters. The total coordination number it
defined as the sum of coordination numbers for all of the atoms in a cluster. Foi
example, Al; (equilateral triangle) has a total coordination number of 6 because
each of the atoms is bonded to two other Al atoms. For Aly, the planar structure
(D,y, symmetry) has four atoms with a coordination number of 2 for a total
coordination number of 8, whereas the nonplanar structure (T; symmetry) has
four atoms with a coordination number of 3, for a total coordination number of 12
Thus, a structure with a total coordination number of 8 is lower in energy than &
structure with a total coordination number of 12. For Als, the planar structure (C 2,
symmetry) has a total coordination number of 16, whereas the nonplanar structure
(T; symmetry) has a total coordination number of 20. However, the ground state
of Alg is three-dimensional (O, symmetry) and has a total coordination numbei
of 24, and the lowest-energy planar structure of Alg (Cy, symmetry) has a tota.
coordination number of 20. These considerations show why it is very difficul
to develop many-body functional forms that fit all these clusters; such functions
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must favor low coordination numbers for Aly and Als but higher coordination
numbers for Alg and larger. We have only examined structural isomers where
the coordination number differs between isomers and not clusters, and that have
the same coordination number but different structural isomers.5

3. NANOPARTICLE SIMULATIONS

Simulation Procedure

The potential used for the simulations is the NP-B embedded-atom model. The
nanoparticles are simulated via Metropolis Monte Carlo®! in a canonical ensemble
where the number of atoms, box size, and temperature are fixed. Al, nanoparticles
with n =55, 400, and 1000 were simulated with periodic boundary conditions
with cubic box lengths of 35, 45, and 60 A, respectively. For the 55-atom sys-
tem, the starting structure is an energy (NP-B potential) minimized icosahedral
nanoparticle. The starting structure for 400- and 1000-atom systems is a FCC
nanocrystal. Accordingly, the size of the box in each case is larger enough that
the periodic images of a nanoparticle do not interact. Consequently, the particles
are treated essentially as isolated nanodroplets in each case.

Nanoparticle Diameters

There are many ways that one can compute the diameters of nanoparticles. We
compute the particle diameters as the maximum distance between two atoms plus
twice the van der Waals radius of Al. The van der Waals radius for Al is 2.346
A (see below). The particles discussed in this section were optimized with the
NP-B potential unless otherwise specified. The diameters for all the particles in
this section are given in Table 1.

The first particle that we discuss is Alys. Aljz is a special cluster because
it is the first cluster that can have an atom with a coordination number of 12.
An Al atom in a periodic FCC lattice also has a coordination number of 12;
therefore, Alys is the smallest cluster to have an interior “bulklike” atom and
surface atoms. The global minimum?>3 of Aly3 (icosahedron) found with NP-B
at 0 K has dmax = 1.09nm. The FCC-nanocrystal for Aljs has dmax = 1.02 nm.
The global minimum of Alig with the NP-B potential (double-icosahedron) has
dmax = 1.26 nm, and the FCC-nanocrystal has dmax = 1.29 nm. The ground-state
structure of Alss with the NP-B potential is icosahedral with dmax = 1.55 nm,
whereas the FCC-nanocrystal has dmax = 1.58 nm. From these results we can
see that the diameters of the particles for a given number of atoms are not
very sensitive to the crystal structure, as the FCC-nanocrystals and icosahedral
nanoparticles for a given number of atoms differ by an average of 0.04nm. We
conclude that the particle diameter is, to a first approximation, independent of
crystal structure.

The structures for Alsygg and Aljgoo were optimized with the NP-B poten-
tial. The starting geometries were the globally optimized geometries for the
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TABLE 1. Maximum Al-Al Distance d s, (nm) for
Several Al Particles Computed Using the NP-B
Embedded-Atom Model

Number of Atoms Structure Dnax
T=0K

13 FCC-nanocrystal 1.09

global minimum* 1.02

19 FCC-nanocrystal 1.26

global minimum? 1.29

55 FCC-nanocrystal 1.58

global minimum? 1.55

400 global minimum? 2.72

1000 global minimum® 3.77
T =1000 X

55 ensemble average 1.71

400 ensemble average 3.00

1000 ensemble average 3.92
T=1500 K

55 ensemble average 1.80

400 ensemble average 3.11

1000 ensemble average 4.10
T =2000 K

55 ensemble average 1.88

400 ensemble average 3.24

1000 ensemble average 421
T=2500 K

55 ensemble average 1.97

400 ensemble average 342

1000 ensemble average 4.38

4Icosahedral.

5The geometry was optimized by starting with the global minimum
for a Lennard-Jones particle (see the text).

Lennard-Jones system,%? where the initial coordinates were scaled by 3.00. The
coordinates for the Lennard-Jones system were obtained from the Cambridge
Cluster Database.%?:5% For optimized Alyg and Alygoo, dmax = 2.72 and 3.77 nm,
respectively. It is reasonable to expect that the diameters would change by less
0.1 nm if a more exhaustive search for the global minimum were conducted.
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The average dnax values for nanodroplets (Al, with n =55, 400, and 1000
with 7 = 1000 to 2500 K) are also given in Table 1. We note initially that for all
droplet sizes dmax With 7 > 1000 K is greater than dp,x with T =0 K, which is an
expected result. The interesting aspect of these dyax values is that the diameters
increase at different rates, depending on the number of atoms in the droplet. To
explore this, we have fit (dmax,7) to a linear equation,

dmax = BT +b (6)

where the slope of the line, B, indicates how rapidly dmax increases with 7. The
intercept, b, would in principle be the value of dmax at T =0, but we do not
expect dmax to remain linear with T as the particles undergo a phase change
from liquid to solid. The values of B for Al, with n =55, 400, and 1000 are
3.0x 1073, 2.8 x 1073, and 1.7 x 103 K1, respectively. We can see that B
increases with an increasing number of atoms and that the response of dp,x to
T is a size-dependent property.

Density and Thermal Expansion

A fundamental property of any material is the density. The density is unam-
biguous for bulk materials, but for nanoparticles it requires a definition of the
volume of the nanoparticle. Here, we calculate the nanoparticle volume by using
the method of overlapping van der Waals spheres.®* We denote the density com-
puted from the number of particles and the volume of overlapping van der Waals
spheres as pygw. In this method, the only input that is required is the van der
Waals radius for Al. The van der Waals radius, ryqw, that we use for Al is
2.346 A. This value was obtained from the bond length of AlNe and Ne, by the
relationship

(Al = re(AINe) ~ >re(Neo) %

where r.(AlNe) and r.(Ne;) are the bond lengths of AINe and Ne,, respectively.
We computed r.(AlNe) and r.(Ne3) to be 3.894 and 3.099 A, respectively, using
WFT. The electron correlation method used was coupled cluster theory with
single and double substitutions and quasiperturbative triples, CCSD(T),%-¢7 and
the one-electron basis set used was the aug-cc-pV5Z%® basis set.

We can also compute the covalent radii, r¢oy, of Al by first computing the
bond length of Al, particles that, by symmetry, have one unique Al-Al bond
length. We have computed the bond length using the PBEO density functional
with the MEC scheme. The Al, clusters that we examined are Al,, Alz with
D3, symmetry, and Alj3, Alss, and Alj77 FCC-nanocrystals. The small clusters,
Al, and Als, have r.,, = 1.365 and 1.253 A, respectively. The FCC-nanocrystals
have r.ov =1.923, 1.938, and 1.985 A, respectively. The zero-point-exclusive
experimental lattice constant'® at 0 K implies an equilibrium internuclear distance
of nearest neighbors of 4.022 A, which corresponds to r¢oy =2.011 A.
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As stated earlier, the densities are computed from overlapping van der Waals
spheres, which use r,qw. We have seen that reov can depend on the number of
Al atoms. It is also likely that ryqy depends on the number of atoms in the
clusters. This is one unsatisfactory part of our method for computing volumes.
An additional unsatisfactory aspect of this method for computing volumes is that
voids are excluded from the total volume, and the total volume associated with
voids may be nonneglible as the temperature is increased. The major drawback to
excluding voids is that it does not allow a meaningful comparison to experiment
or a bulk simulation. In a bulk simulation, the density of a liquid is computed from
the number of atoms within the simulation box and volume of the box. In this
manner, voids are included in the total volume of the liquid. In bulk experiments,
the density of liquid aluminum is determined by melting a millimeter-sized piece
of Al and measuring the diameter and mass of the drop.69 In this manner, voids
are once again included in the total volume. An alternative way” to obtaining
the nanoparticle volumes would be to roll a probe sphere over the surface of the
nanoparticle. This would eliminate the contribution of internal voids, but it will
introduce parameter-dependent oscillations in the surface area.

In Table 2 we give the computed nanoparticle densities, pyqw. We also
include experimental values of the density of bulk liquid.®® We denote the
experimental value of the density of the bulk liquid as pcy,. We can see that the
Pvaw values are always lower than the experimental values for the bulk liquid.
This is not entirely unexpected, as the nanoparticle densities should be lower due
to surface effects, but it is not clear what significance should be attached to this

TABLE 2. Coefficient of Thermal Expansion, o (10~5 K-1) for Alss, Alyg, and
Alyo00; Density, p (g/mL); and the Sphericality Parameter, L (Unitless)

PvdW Bulk Liquid

Property Alss Algoo Alyo00 Pbuik” Pexp’
| %

1000 K 1.67 1.96 2.06 2.30 2.36

1500 K 1.61 1.88 1.97 2.19 2.25

2000 K 1.55 1.81 1.89 2.09 2.13

2500 K 1.50 1.73 1.82 2.00 2.01
o 6.77 7.79 7.93 8.86¢ 9.914
L

1000 K 0.88 0.94 0.95

1500 K 0.84 0.93 0.94

2000 K 0.82 0.91 0.94

2500 K 0.79 ‘ 0.88 0.94

“Calculated by extrapolating the nanodroplets volumes using pyaw =aN ~!/3 + Pbulk, Where N is
the number of atoms.

bExperimental density.

“Calculated from ppyy.

dCalculated from Pexp-
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finding because of the volume of nanoparticle voids. For example, if we fit the
density of Alss, Alsgo, and Aljgee with 7 = 1000 K to pyaw = aN 13 4 ppuix, we
find that pyyx =2.30 g/mL. The value of pyyx corresponds to the bulk density,
and it differs from the experimental value of 2.36 g/mL by 0.06 g/mL. The dis-
crepancy between the calculated and expected values cannot be attributed only to
the presence of voids because correcting for voids would increase the calculated
density. We have also found that we can change the values of pyy and pygw by
changing the value of r,qw. For example, decreasing the van der Waals radius by
23% to 1.9 A increases the density of Aljgoo at 1000 K to 2.31 g/mL (+ 12%)
and increases ppuk at 1000 K by 2.41 g/mL (4 5%). Due to the differences in
Poulk and pexp, it might be more appropriate to compare pyaw t0 pPpurx than to
Pexp- Values of ppuix and pexp for all of the temperatures are given in Table 2.

By comparing the nanoparticle densities (pygw) to the extrapolated bulk den-
sities (ppuik), We can see that the nanodroplets expand with temperature at a
different rate than does the bulk liquid. To quantify this, we calculate the coef-
ficient of thermal expansion. For the nanodroplets the coefficient of thermal
expansion, oygw, 1s calculated as

1 dVyaw

Oydw = —

V dT ®

where Vygw is the volume computed from overlapping van der Waals spheres.
For the bulk liquid, we compute oy as

d(1/ppulk)

T 9)

Qpulk = Pbulk

where ppyi is defined in the preceding paragraph. We have computed ppyx at
T = 1000, 1500, 2000, and 2500 K and then fitted (1/pex, 7)) to a linear line to
obtain oy for the bulk liquid. The computed values of apyx are given in Table 2
along with the experimental value, 0cxp, for this quantity. We compute dexp by
replacing ppuik With pexp in Eq. (9).

We first talk about apyx and Oexp. The values of apux and oexp are 8.9 x 10~3
and 9.9 x 107 K1, respectively. The agreement between aurx and ey is very
good, despite the approximations that are involved in calculating otpyk. Turning
now to the nanodroplets, we can see from Table 2 that ayqw is a size-dependent
property that decreases with decreasing particle size. For the smallest droplet,
Alss, the computed ayaw is 6.8 x 107> K1, and that is 69% of apyx; however,
for the largest particle, Aljgoo, the computed oaygw 1s 7.9 X 107> K1, 89% of
Obulk -

The size dependence of the coefficient of thermal expansion has previously
been studied by Pathak and Shenoy for systems below the melting point.’! The
coefficient of thermal expansion that Pathak and Shenoy>! calculated is denoted
as Olgress, Decause it is computed from the temperature-dependent stress tensor,
whereas we calculate aygw from volume changes. Also, Ogyess is computed for
nanometer-thick slabs with two-dimensional periodicity, and aygew is for liquid
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droplets. The values of Olgyess for 2.0-, 3.2-, and 4.0-nm-thick slabs are 4.6 x 107,
5.3 x 1073, and 5.6 x 107> K1, respectively.

In this chapter we chose to focus on the similar behavior of ogyess and oygw
rather than the differences between the two quantities. The results of Pathak
and Shenoy51 showed that ogyess increases with decreasing slab thickness for a
Lennard-Jones system, whereas they showed that ayess decreases with decreasing
slab thickness for an Al system. (Pathak and Shenoy>! modeled the Al slab with
the embedded atom model of Ercolessi and Adams.*!) Whether agyess increases
or decreases with decreasing particle size depends on the type of system being
studied. The results of Pathak and Shenoy>! agree qualitatively with our results,
as we find that aygw decreases with decreasing system size. ~

Earlier we discussed the dependence of particle diameter, d 5, on T, where
this relationship was quantified through B in Eq. (6). We saw that § increases
with increasing particle size as ayqw does. It is clear that these two quantities,
B and aygw, are related, as they both pertain to changes in particle size with
temperature.

Shapes

Another fundamental property of a nanoparticle is its shape. It is sometimes
assumed,* due to lack of better information, that Al nanoparticles are spherical.
We are able to quantify the shape of a nanodroplet by using the sphericality
parameter, L, of Mingos et al., which is defined as

L = M (10)

3
Zi:l Ii

where [; is the principal moment of interia i and [ uique 1S the unique principal
moment of inertia. Iypigue is defined as the principal moment of interia that
deviates most from the average principal moment of inertia. Using this definition,
L =1 for a sphere, 0 <L < 1 for an prolate spheroid, and 1 < L < 1.5 for an oblate
spheroid. The sphericality parameter for a cylinder that has the length and width
of a football is 0.51, whereas L for a hockey puck is 1.40.

The sphericality parameters for the nanodroplets are reported in Table 2. All
of the droplets are prolate spheroids, with the smaller droplets having smaller L
values than those of the larger particles. The shape of the largest droplet, Al;ggp,
is relatively independent of temperature, where L=0.95 for T =1000 K and
L=0.94 for T =1500, 2000, and 2500 K. The shape of the smallest droplet,
Alss, has a stronger dependence on temperature, in particular L =0.88, 0.84,
0.82, and 0.79 for T = 1000, 1500, 2000, and 2500 K, respectively. Alggo is
intermediate between Alss and Aljgge, with L=0.94, 0.93, 0.91, and 0.89 for
T = 1000, 1500, 2000, and 2500 K. We can infer from these results that particles
larger than Aljggo are essentially spherical, and the shape is almost temperature
independent; however, the shapes of smaller particles are prolate and temperature
dependent.
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4. CONCLUSIONS

In this chapter we summarized the development of analytic potential energy func-
tions for simulating Al nanoparticles. One of the key steps in the development
of the analytic potential energy functions was the development of a diverse data
set of geometry-dependent atomization energies for Aly to Alj77 that were calcu-
lated with validated density functional theory. We have developed two potentials,
NP-A35 and NP-B,35 that are accurate for clusters, nanoparticles, and bulk crystal
properties.

The NP-B3% analytic potential energy function is an embedded atom model,
in particular, it is a reparameterized version of the embedded atom model of
Mei and Davenport.#243 The original parameterization by Mei and Davenport is
less accurate for modeling aluminum clusters and nanoparticles; however, this
inaccuracy does not mean that the physical form is not flexible enough to model
clusters and nanoparticles. Our results show that the embedded atom functional
form of Mei and Davenport is promising when the parameters are adjusted against
our cluster and nano-Al data in addition to data for the bulk crystal phases.

The development of the NP-A potential began with an accurate description of
diatomic Al. The many-body effects are incorporated through explicit many-body
terms. The many-body terms used in the NP-A potential involve screening func-
tion and a dependence on coordination number. The physical nature of the
screening function is that it weakens the bond between atoms i and j in the
presence of other atoms. The coordination number term incorporates the depen-
dence of the bond strength on the coordination numbers of the participating atoms.
This bond strength dependence allows for weakening of the bond between atoms
i and j as the number of neighboring atoms is increased. We note that the philos-
ophy of NP-A is quite different from that of NP-B. The NP-B analytic potential
energy function incorporates the many-body effects through an embedding term,
whereas the NP-A potential energy function begins with an accurate descrip-
tion of diatomic Al and uses explicit many-body effects to correct the two-body
interaction in the presence of various atomic environments.

We have used the NP-B potential to simulate Al nanodroplets to study the
size dependence of densities, thermal expansion, and particle shapes. We have
proposed computing the nanoparticle densities by first computing the volumes
using overlapping van der Waals spheres. By computing the densities in this
way, we obtain densities for the nanodroplets that can be used for comparing the
bulk values. We have been able to show that nano-Al droplets have a decreasing
coefficient of thermal expansion with decreasing particle size. We have also
shown that particle shape is size dependent, with smaller particles being prolate
spheroids. The shape of the smallest drop studied, Alss, is more dependent on
temperature than is the largest drop, Aljgoo-
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